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The objective of  this study was to perform a computational analysis of  the pharmacokinetic 
behavior of  ampicillin, using data from the literature. A method based on the theory of  dynamic 
systems was used for modeling purposes. The method used has been introduced to pharmaco-
kinetics with the aim to contribute to the knowledge base in pharmacokinetics by including the 
modeling method which enables researchers to develop mathematical models of  various phar-
macokinetic processes in an identical way, using identical model structures. A few examples of  a 
successful  use of  the modeling method considered here in pharmacokinetics can be found in full 
texts articles available free of  charge at the website of  the author, and in the example given in the 
this study. The modeling method employed in this study can be used to develop a mathematical 
model of  the pharmacokinetic behavior of  any drug, under the condition that the pharmacoki-
netic behavior of  the drug under study can be at least partially approximated using linear models. 
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Introduction
The antibiotic drug ampicillin was developed in 1961 
[1,2]. It is commonly used to treat respiratory tract in-
fections, urinary tract infections, meningitis, salmonella 
infections, and endocarditis. Besides that, ampicillin has 
been used also to prevent group B streptococcal infec-
tion in newborns, and also as an anticancer drug [1-3]. 
During the last decades, the research domain of  systems 
engineering emerged as a domain of  fundamental impor-
tance with a great impact on several fields of  sciences, 
including the field of  pharmacokinetics, see for exam-
ple the following studies [4-21] and references therein. 
Previous examples showing an advantageous use of  the 
modeling method used in this study can be found in the 
full text articles available online, which can be download-

ed, free of  charge from the following web page of  the 
author: http://www.uef.sav.sk/advanced.htm
Ampicillin is administered mostly by mouth. Besides that, 
ampicillin is also administered by injection into a muscle, 
and/or intravenously. Common side effects of  ampicil-
lin include rash, nausea, and diarrhea. The objective of  
this study was to perform a computational analysis of  the 
pharmacokinetic behavior of  ampicillin in patient no.1, 
using the data from the study published previously [2].  

Materials and Methods
For modeling purposes, a mathematical modeling method 
based on the theory of  dynamic systems was employed 
[4-21]. The development of  a mathematical model for 
computational analysis of  the pharmacokinetic behavior 
of  ampicillin in patient no. 1 [2] was performed in the 
following successive steps:
- In the first step, the pharmacokinetic dynamic system, 
denoted by H, was defined for patient no. 1, using: 
1) the Laplace transform of  the mathematical function 



describing  the ampicillin administration to patient no. 1, 
denoted by I(s), and considered the mathematically rele-
vant ampicillin input to the body of  patient no. 1, and/
or to the  pharmacokinetic dynamic system  defined [22]    
2) the Laplace transform of  the mathematical function 
describing the plasma concentration-time profile of  am-
picillin of  patient no. 1,  denoted  by C(s) , and considered 
as the mathematically relevant output of  the dynamic 
system defined. In the whole text of  this study, the lower 
case letter “s” denotes the complex Laplace variable. 
- In the second step, the following simplifying assump-
tions were made: 
a) initial conditions of  the pharmacokinetic  dynamic sys-
tem defined were zero;  
b) pharmacokinetic processes occurring in the body after 
the ampicillin administration were linear and time invari-
ant; 
c) ampicillin concentrations were the same throughout all  
subsystems of  the  pharmacokinetic dynamic system de-
fined (where subsystems were integral parts of  the phar-
macokinetic dynamic system defined); 
d) no barriers to the distribution and/or elimination of   
ampicillin existed.  
- In the third step, pharmacokinetic dynamic system 
defined was used to mathematically describe static and 
dynamic properties of  the pharmacokinetic behavior of  
ampicillin in the patient no. 1 [23-25].  
- In the fourth step,  the transfer function, denoted by of   
the pharmacokinetic dynamic system defined was derived 
using: 
1) the Laplace transform of  the mathematical  function 
describing  the  ampicilin administration to patient no.1, 
denoted by, and considered  the mathematically relevant 
ampicillin input to the patient’s body and/or to the dy-
namic system defined [22] and 
2) the Laplace transform of  the mathematical function 
describing  the plasma concentration-time profile of   am-
picillin, denoted by,  and considered the mathematically 
relevant output of  the dynamic system defined:

         (1)
                                                                                                                                                               

- In the fifth step, the pharmacokinetic dynamic system 
defined was described with the transfer function, denot-
ed by H(s). 
For modeling purposes, the computer program  CTDB 
[4] and the transfer function model, denoted by described 
by Equation (2) were used: 
                                                                                                                              

( )( ) .
( )

C sH s
I s

=

          
          (2) 
     

On the right-hand-side of  Equation (2) is the Padé ap-
proximant [26,27] of  the transfer function model HM(s) 
is the model parameter called a gain of  a dynamic system 
a1...an, b1...bn, are additional model parameters, and n is the 
highest degree of  the nominator polynomial, and m is the 
highest degree of  the denominator polynomial, where n 
< m [4-21]. 
- In the sixth step, the transfer function H(s) was convert-
ed into equivalent frequency response function, denoted 
by   F(iωj )[26].
- In the seventh step,  the non-iterative method published 
previously [26] was used to develop a mathematical mod-
el of  the frequency response function FM(iωj ) of  Patient 
no.1and to obtain point estimates of  parameters of  the 
frequency response function model FM(iωj ) in the com-
plex domain. The frequency response function model     
FM(iωj ) used in this study is described by the following 
equation:
 
        
          (3)                                                                                                                                              
                

Analogously as in Equation (2), is the highest degree 
of  the numerator polynomial of  the frequency response 
function model  FM(iωj ), m is the highest degree of  the 
denominator polynomial of  the frequency response 
function model  FM(iωj ), n < m is the imaginary unit, and 
ω is the angular frequency in Equation (3) [26].     
- In the eighth step, the frequency response function 
model FM(iωj ) was refined using the Monte-Carlo and the 
Gauss-Newton method in the time domain.
- In the ninth step, the Akaike information criterion [28] 
was used to select the best the model of  the frequency 
response function FM(iωj ) among all frequency response 
function modes developed [6-20]. 
- In the final step, 95 % confidence intervals were calcu-
lated for all parameters of  the best frequency response 
function model FM(iωj ) developed. In the following text, 
the pharmacokinetic dynamic system was simply called 
the dynamic system. 
After the development of  a mathematical model of  the 
dynamic system, the following potentially important  
pharmacokinetic variables of  ampicillin were determined: 
the elimination half-time of  ampicilin, denoted by t½ the 
area under the plasma concentration-time profile of  am-
picillin from time zero to infinity, denoted by AUC0→∞  
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and total body clearance of  ampicillin, denoted by Cl .

Results and discussion
The data of  patient no.1 from the study by Colburn 
[2] were arbitrarily chosen for this study. The best-fit 
third-order model FM(iωj) selected using the Akaike’s 
information criterion [28] is described by the following 
equation:
                                                                    
          (4) 
     

0 1

1 2 2 3 3

( ) .
1

j
M j

j

a a i
F i G

b i b i b i
+ ω

ω =
+ ω + ω + ω

Table 1. Point estimates of  parameters of  the model devel-
oped for patient no.1 [2] 
Model
parameters

Point estimates of  model parameters 
± standard deviation

a0 1.00 ± 0.11
a1 1.52 x 103 ± 0.12
b1 2.03 x 102 ± 70.1
b2 1.01 x 104 ± 0.09
b3 2.22 x 105 ± 0.01

Table 2. Potentially important pharmacokinetic variables of  
ampicillin of  patient no.1 [2]
Potentially important 
pharmacokinetic vari-
ables of  ampicillin

Estimates of  potentially important 
pharmacokinetic variables of  

ampicillin ± standard deviation

Cmax (µg/mL) 23.5 ± 1.55
t½ (h) 0.74 ± 0.11
Cl (mL/min) 61.1 ± 2.38
Vss (L) 13.1 ± 1.04
Cmax– maximum ampicillin concentration in plasma; t1/2 – 
elimination half  life of  ampicillin; Cl – clearance of  ampi-
cillin; Vss – apparent volume of  distribution of  ampicillin

                                                                                                                                                                    
As shown in Figure 1, the model developed provided an 
adequate fit to the observed serum concentration-time 
profile of  ampicillin of  patient no.1 [2]. Point estimates 
of  the parameters a0, a1, b1, b2, b3 of  the best model  FM(iωj) 
are listed in Table 1. Model-based estimates of  potential-
ly important pharmacokinetic variables of  ampicillin are  
listed in Table 2.   
The dynamic system used in this study was a mathemat-

ical object, without any physiological significance. It was 
used to mathematically approximate static and dynamic 
properties of  the pharmacokinetic behavior of  ampicillin 
[23-25] in patient no.1 [2]. The modeling method used in 
this study was described in detailed in the studies pub-
lished previously, authored and/or co authored by the 
author of  this study [4,6-20].  As in previous studies, the 
development of  a mathematical model of  the pharmaco-
kinetic dynamic system defined was based on the known 
input and output of  the dynamic system defined was used 
in this study. In general, if  a dynamic system is modeled 
using a transfer function model, as it was the case in the 
this study (see Equation (2)), then the accuracy of  the 
model depends on the degrees of  the polynomials of  the 
transfer function model   used to fit the data [4,6-20].  
The model parameter called the gain is also called gain 
coefficient, or gain factor. A parameter gain is defined 
as a relationship between a magnitude of  an output of  a 
dynamic system to a magnitude of  an input to a dynamic 
system in steady state [6-20]. Or in other words, a mod-
el parameter gain of  a dynamic system is a proportional 
value that shows a relationship between a magnitude of  
an output to a magnitude of  an input of  a dynamic sys-
tem in the steady state. The pharmacokinetic meaning 
of  a parameter gain depends on the nature of  a dynamic 
system under study. 
The non-iterative method published in the study [26] and 
used in this study allows one to identify an optimal struc-
ture of  frequency response models very quickly.  It is a 
great advantage of  the non-iterative method [26], because 
this significantly speeds up the development of  frequen-
cy response models. The reason for conversion of  HM(s) 
to FM(iωj ) can be explained as follows: the variable: “s ” 
in the transfer function model  HM(s) in Equation (1) 
and Equation (2) is a complex Laplace variable,  while 
the angular frequency “ω” in Equation (3) and Equa-

Figure 1. Plasma concentration-time profile of  ampicillin of  
Patient no.1 (points) [2] and the developed model for patient 
no.1 (line).
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tion (4) is a real variable, what  is suitable for modeling 
purposes. 
The mathematical model developed in this study suf-
ficiently approximated static and dynamic properties 
[23-25] of  the pharmacokinetic behavior of  ampicillin 
in patient no.1 [2]. Therefore, the mathematical model 
developed, successfully described the serum concentra-
tion-time profile of  ampicilin of  patient no.1 [2].  Mod-
eling pharmacokinetic behavior of  ampicilin was per-
formed in this study only with the aim to present the 
further example of  the successful use of  the modeling 
method [4] in pharmacokinetics, without any relation to 
the therapeutic use of  ampicillin. Frequency response 
functions are complex functions, therefore modeling 
must be performed in the complex domain. Moreover, 
modeling methods used to develop model frequency re-
sponse functions are computationally intensive, and for 
accurate modeling they require at least a partial knowl-
edge of  the theory of  dynamic system, and an abstract 
way of  thinking about dynamic systems under study. 
The principal difference between traditional pharmacoki-
netic modeling methods and modeling methods that are 
based on the theory of  dynamic systems can be explained  
as follows: the former methods are based on mathemati-
cal  modeling  plasma  (or blood) concentration-time pro-
files of  drugs administered, however the latter methods 
are based on mathematical modeling dynamic relation-
ships between a mathematically described drug adminis-
tration and a mathematically described resulting plasma 
(or blood) concentration-time profile of  a drug admin-
istered.  
Modeling methods based on the theory of  dynamic sys-
tem exhibit the following advantages when compared 
with compartment modeling method [29-39];
1) key requirements of  compartment modeling methods 
are not necessary;
2) specific model structures (in general unknown) are not 
necessary; 
3) abstract assumptions of  homogenous instantaneous-
ly well mixed compartments are also not necessary. On 
the other hand, modeling methods based on the theory 
of  dynamic system exhibit few apparent disadvantages: 
the development of  mathematical models is not a simple 
task; the use of  the modelling methods considered here 
requires at least partial knowledge of  the theory of  dy-
namic systems and mathematics.  
The transfer function model HM(s) and the model of  
the frequency response function FM(iωj ) have been im-
plemented in the computer program CTDB [4]. A demo 
version of  the computer program CTDB is available at:  
http://www.uef.sav.sk/advanced.htm.

Conclusion
The modelling method used in this study is universal; 
therefore it can be used to model any linear dynamic sys-
tem, not only in the field of  pharmacokinetics but also 
in many other scientific or practical fields. This study re-
peatedly showed that a modelling method based on the 
theory of  dynamic systems can be advantageously used 
in pharmacokinetics. As it follows from this study, the 
integration of  key pharmacokinetic concepts and bioen-
gineering concepts bioengineering is a good and efficient 
way to study dynamic processes in pharmacokinetics, be-
cause such integration combines mathematical rigor with 
biological insight.
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